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Abstract

Osteoporosis constitutes a significant public health risk. An estimated 10.2 million adults in the United States >50 years of age have
osteoporosis, a systemic condition that weakens the bones increasing the susceptibility for fractures. Approximately one-half of women
and nearly one-third of men >50 years of age will sustain an osteoporotic fracture. These fractures are associated with a decrease in
quality of life, diminished physical function, and reduced independence. Dual-energy X-ray absorptiometry (DXA) is the primary
imaging modality used to screen for osteoporosis in women >65 years of age and men >70 years of age. DXA may be used in patients
<65 years of age to evaluate bone mass density if there are additional risk factors. In certain situations, vertebral fracture assessment and
trabecular bone score may further predict fracture risk, particularly in patients who are not yet osteoporotic but are in the range of
osteopenia. Quantitative CT is useful in patients with advanced degenerative changes in the spine. Given the proven efficacy of
pharmacologic therapy, the role of imaging to appropriately identify and monitor high-risk individuals is critical in substantially reducing
osteoporosis-associated morbidity and mortality, and reducing the considerable cost to the health care system.
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Disclaimer: The ACR Committee on Appropriateness Criteria and its expert panels have developed criteria for determining appropriate imaging examinations for diagnosis and treatment of
specified medical condition(s). These criteria are intended to guide radiologists, radiation oncologists and referring physicians in making decisions regarding radiologic imaging and treatment.
Generally, the complexity and severity of a patient’s clinical condition should dictate the selection of appropriate imaging procedures or treatments. Only those examinations generally used for
evaluation of the patient’s condition are ranked. Other imaging studies necessary to evaluate other co-existent diseases or other medical consequences of this condition are not considered in this
document. The availability of equipment or personnel may influence the selection of appropriate imaging procedures or treatments. Imaging techniques classified as investigational by the FDA
have not been considered in developing these criteria; however, study of new equipment and applications should be encouraged. The ultimate decision regarding the appropriateness of any
specific radiologic examination or treatment must be made by the referring physician and radiologist in light of all the circumstances presented in an individual examination.
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The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a
multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature
from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and
Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the
methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances
where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a
recommendation.

Key Words: Appropriateness Criteria, Appropriate Use Criteria, AUC, Bone mineral density, DXA, Osteopenia, Osteoporosis, QCT,
VFA
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ACR Appropriateness Criteria� Osteoporosis and Bone Mineral Density: 2022 Update. Variants 1 to 6 and Tables 1 and 2.
Variant 1. Osteoporosis screening or initial imaging of clinically suspected low bone mineral density.

Procedure Appropriateness Category Relative Radiation Level

DXA lumbar spine and hip(s) Usually Appropriate ☢

DXA distal forearm May Be Appropriate ☢

QCT lumbar spine and hip May Be Appropriate ☢☢☢

QUS calcaneus Usually Not Appropriate O

SXA distal forearm Usually Not Appropriate ☢

TBS lumbar spine Usually Not Appropriate ☢

Radiography appendicular skeleton Usually Not Appropriate ☢☢

Radiography axial skeleton Usually Not Appropriate Varies

Variant 2. Follow-up imaging of patients demonstrated to have risk for fracture or surveillance of established low bone
mineral density.

Procedure Appropriateness Category Relative Radiation Level

DXA lumbar spine and hip(s) Usually Appropriate ☢

DXA distal forearm May Be Appropriate ☢

TBS lumbar spine May Be Appropriate ☢

QCT lumbar spine and hip(s) May Be Appropriate ☢☢☢

QUS calcaneus Usually Not Appropriate O

DXA VFA Usually Not Appropriate ☢

SXA distal forearm Usually Not Appropriate ☢
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Variant 3. Follow-up imaging. Patients with T-scores less than �1.0 (by DXA) and one or more of the following: 1) Females
equal to or greater than 70 years of age or males equal to or greater than 80 years of age; 2) Historical height loss greater
than 4 cm (greater than 1.5 inches); 3) Self-reported but undocumented prior vertebral fracture; 4) Glucocorticoid therapy
equivalent to equal to or greater than 5 mg of prednisone or equivalent per day for equal to or greater than 3 months.

Procedure Appropriateness Category Relative Radiation Level

DXA lumbar spine and hip(s) Usually Appropriate ☢

DXA VFA Usually Appropriate ☢

DXA distal forearm May Be Appropriate ☢

Radiography axial skeleton May Be Appropriate Varies

QCT lumbar spine and hip May Be Appropriate ☢☢☢

QUS calcaneus Usually Not Appropriate O

SXA distal forearm Usually Not Appropriate ☢

TBS lumbar spine Usually Not Appropriate ☢

Radiography appendicular skeleton Usually Not Appropriate ☢☢

Variant 4. Initial imaging for premenopausal females or males less than 50 years of age. Individual with risk factors that could
alter bone mineral density.

Procedure Appropriateness Category Relative Radiation Level

DXA lumbar spine and hip(s) Usually Appropriate ☢

DXA distal forearm May Be Appropriate ☢

QUS calcaneus Usually Not Appropriate O

SXA distal forearm Usually Not Appropriate ☢

TBS lumbar spine Usually Not Appropriate ☢

Radiography appendicular skeleton Usually Not Appropriate ☢☢

Radiography axial skeleton Usually Not Appropriate Varies

QCT lumbar spine and hip Usually Not Appropriate ☢☢☢

Variant 5. Premenopausal females with risk factors. Males less than 50 years of age with risk factors. Follow-up to low bone
mineral density.

Procedure Appropriateness Category Relative Radiation Level

DXA lumbar spine and hip(s) Usually Appropriate ☢

DXA distal forearm May Be Appropriate ☢

QCT lumbar spine and hip May Be Appropriate ☢☢☢

QUS calcaneus Usually Not Appropriate O

SXA distal forearm Usually Not Appropriate ☢

TBS lumbar spine Usually Not Appropriate ☢
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Variant 6. Males and females greater than or equal to 50 years of age. Suspected osteoporosis. Advanced degenerative
changes of the spine with or without scoliosis, or other conditions that may spuriously elevate BMD. Initial imaging.

Procedure Appropriateness Category Relative Radiation Level

DXA distal forearm Usually Appropriate ☢

DXA lumbar spine and hip(s) Usually Appropriate ☢

QCT lumbar spine and hip Usually Appropriate ☢☢☢

QUS calcaneus Usually Not Appropriate O

SXA distal forearm Usually Not Appropriate ☢

Radiography appendicular skeleton Usually Not Appropriate ☢☢

Radiography axial skeleton Usually Not Appropriate Varies

Table 1. Appropriateness category names and definitions

Appropriateness Category
Name

Appropriateness
Rating Appropriateness Category Definition

Usually Appropriate 7, 8, or 9 The imaging procedure or treatment is indicated in the specified
clinical scenarios at a favorable risk-benefit ratio for patients.

May Be Appropriate 4, 5, or 6 The imaging procedure or treatment may be indicated in the
specified clinical scenarios as an alternative to imaging
procedures or treatments with a more favorable risk-benefit ratio,
or the risk-benefit ratio for patients is equivocal.

May Be Appropriate
(Disagreement)

5 The individual ratings are too dispersed from the panel median. The
different label provides transparency regarding the panel’s
recommendation. “May be appropriate” is the rating category
and a rating of 5 is assigned.

Usually Not Appropriate 1, 2, or 3 The imaging procedure or treatment is unlikely to be indicated in the
specified clinical scenarios, or the risk-benefit ratio for patients is
likely to be unfavorable.

Table 2. Relative radiation level designations

RRL Adult Effective Dose Estimate Range (mSv) Pediatric Effective Dose Estimate Range (mSv)

O 0 0
☢ <0.1 <0.03
☢☢ 0.1-1 0.03-0.3
☢☢☢ 1-10 0.3-3
☢☢☢☢ 10-30 3-10
☢☢☢☢☢ 30-100 10-30

Note: Relative radiation level (RRL) assignments for some of the examinations cannot be made, because the actual patient doses in these
procedures vary as a function of a number of factors (eg, region of the body exposed to ionizing radiation, the imaging guidance that is
used). The RRLs for these examinations are designated as “varies.”
SUMMARY OF LITERATURE REVIEW

Introduction/Background
Osteoporosis is a systemic skeletal condition characterized
by reduced bone density and deterioration of osseous tissue
that leads to bone fragility and increased susceptibility to
fracture [1]. Bone strength is a product of bone mineral
S420
density (BMD), a quantifiable property, and the integrity
of trabecular microarchitecture. Currently, the consensus
approach to screening and monitoring osteoporosis in the
population is measurement of BMD, which is an effective
way to identify patients who are at risk for fracture. An
estimated 10.2 million adults in the United States >50
Journal of the American College of Radiology
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years of age have osteoporosis; however, the aging of the
population is projected to increase this number by >30%
by 2030, even though most experts agree that osteoporosis
is generally underdiagnosed [2,3]. Approximately one-half
of women and nearly one-third of men >50 years of age
will sustain an osteoporotic fracture [4]. The yearly number
of fractures is projected to increase from 1.9 million in 2018
to over 3.2 million fractures by 2040, with direct medical
costs increasing from $48.8 billion to $81.5 billion during
the same time range [5,6]. When indirect societal costs are
also considered, the total projected cost could exceed $95
billion by 2040 [6].

Osteoporotic fractures are associated with subsequent
fractures and premature mortality. In patients who have
sustained a fracture, 10% will have another within 1 year,
18% within 2 years, and 31% within 5 years [7]. The first-
year mortality rate is 20%, but there is also a 3- to 4-fold
increased risk of mortality in the subsequent 5 years
following any fragility fracture [8]. It is highest after
sustaining a hip fracture, where there is a 1-year mortality
of 24% in women and 38% in men [9]. Fragility fractures
are also associated with a decrease in quality of life,
diminished physical function, and reduced independence
[10]. Given the proven efficacy of pharmacologic therapy,
the role of imaging to appropriately identify and monitor
high-risk individuals is critical in substantially reducing
osteoporosis-associated morbidity and mortality.

Special Imaging Considerations
Dual-energy X-ray absorptiometry (DXA) is the mainstay of
bone densitometry to screen for osteopenia and osteoporosis.
Because this modality relies on precision, it is essential for
patients to be scanned on the same DXA machine because
differences in vendor technologies prohibit a direct compar-
ison unless cross calibration has been performed [11,12].

CT is a cross-sectional-based X-ray technology that uses
tomographic technique coupled with computer processing
to generate a cross-sectional image. CT has a higher sensi-
tivity to subtle differences in electron densities than radi-
ography and therefore creates an image with markedly
improved contrast.

Quantitative CT (QCT) is performed on a standard
clinical scanner and is highly accurate in determining tissue
density within a region of interest. Scanning sites for QCT
include the lumbar spine and hip. Several studies have
assessed using conventional CT scans for measurement of
bone density by establishing threshold Hounsfield unit
levels that are diagnostic for osteopenia and osteoporosis,
but this concept remains an opportunistic use of CT and
not a screening tool [13-15]. High-resolution peripheral
QCT uses the same technology in a smaller dedicated ma-
chine and focuses on the distal radius and tibia. Currently,
Journal of the American College of Radiology
Yu et al n Osteoporosis and Bone Mineral Density
peripheral QCT studies are not approved for diagnosis of
osteoporosis, although it has research applications in deter-
mining alterations in the bone architecture. It should be
noted that peripheral QCT is commonly performed in
children [16].
Initial Imaging Definition
Initial imaging is defined as imaging at the beginning of the
care episode for the medical condition defined by the
variant. More than one procedure can be considered usually
appropriate in the initial imaging evaluation when:

n There are procedures that are equivalent alternatives (ie,
only one procedure will be ordered to provide the clinical
information to effectively manage the patient’s care)

OR

n There are complementary procedures (ie, more than one
procedure is ordered as a set or simultaneously where each
procedure provides unique clinical information to effec-
tively manage the patient’s care).
DISCUSSION OF IMAGING MODALITIES BY
VARIANT

Variant 1: Osteoporosis screening or initial
imaging of clinically suspected low bone
mineral density
The indications for BMD testing according to the Inter-
national Society for Clinical Densitometry (ISCD) are [17]:

1. All women �65 years of age and men �70 years of age
(asymptomatic screening)

2. Women <65 years of age who have additional risk for
osteoporosis, based on medical history and other find-
ings. Additional risk factors for osteoporosis include:
a. Estrogen deficiency
b. A history of maternal hip fracture that occurred after

the age of 50 years
c. Low body mass (<127 lb or 57.6 kg)
d. History of amenorrhea (>1 year before 42 years of age)

3. Women <65 years of age or men <70 years of age who
have additional risk factors, including:
a. Current use of cigarettes
b. Loss of height, thoracic kyphosis

4. Individuals with bone mass osteopenia or fragility frac-
tures on imaging studies such as radiographs, CT, or
MRI

5. Individuals �50 years of age who develop a wrist, hip,
spine, or proximal humerus fracture with minimal or no
trauma, excluding pathologic fractures

6. Individuals of any age who develop one or more insuf-
ficiency fractures
S421



7. Individuals being considered for pharmacologic therapy
for osteoporosis

8. Individuals being assessed for the effectiveness of osteo-
porosis drug therapy

DXA. DXA is recommended for osteoporosis screening or
initial imaging of clinically suspected low BMD. It is a
clinically proven method of measuring BMD in the lumbar
spine, proximal femur, forearm, and whole body. BMD
measurements derived from DXA has been shown to
accurately predict fracture risk [18,19]. Epidemiological
studies have demonstrated that BMD correlates to
population fracture risk and amount of force necessary to
fracture bone [20,21].

In a routine DXA study, 2 sites (the lumbar spine and
hip) are reported. In the spine, a frontal projection measures
up to 4 vertebral bodies from L1 to L4, and in the hip, a
frontal projection measures 2 regions: the femoral neck and
total hip [17]. In the event of a falsely elevated BMD of the
lumbar spine caused by fracture, facet joint osteoarthritis, or
spondylosis, up to 2 vertebral levels may be excluded from
analysis. However, if exclusion of more than 2 vertebral
body levels is necessary, then the second hip can be
scanned as a substitute for the spine [22]. Alternatively,
the distal one-third radius of the nondominant arm may
be used as a third site in situations in which only one hip is
available. Otherwise, the distal one-third radius is used
primarily in patients with hyperparathyroidism. Primary
hyperparathyroidism preferentially decreases mineralization
at cortical-rich sites such as the hip and mid radius, in
contrast to the predominantly cancellous bone of the lumbar
spine [22].

The accuracy and reproducibility of DXA has led to the
establishment of standards for the diagnosis of osteoporosis
set forth by the World Health Organization (WHO), with
endorsement by the National Osteoporosis Foundation
(NOF) and the American Association of Clinical Endocri-
nologists [23,24]. Fracture risk is determined when BMD as
measured by DXA is compared with a gender-matched
asymptomatic reference population. Diagnosis is based on
T-scores, the number of SDs that the patient’s BMD is
above or below the mean in a reference population, which
varies with sex and race. The Z-score represents the number
of standard deviations above or below the mean of age-
matched controls. Z-scores are used to detect secondary
causes of osteoporosis.

The WHO defines normal BMD as a T-score ��1.0.
Low bone mass or osteopenia is defined as T-score
between �1.0 and �2.5, whereas T-scores ��2.5 indicate
osteoporosis [25]. An osteoporotic fracture supersedes any
DXA measurement, so that patients who are in the
osteopenic range who have a fragility fracture should
S422
be upgraded to the diagnosis of osteoporosis [1]. The
NOF recommends pharmacologic treatment for all
postmenopausal women and men >50 years of age with a
T-score ��2.5 [26]. In patients with low bone mass, a
fracture risk assessment tool, most commonly FRAX, is
used. The FRAX tool factors include hip BMD, age, sex,
height, weight, family history of hip fracture, smoking,
steroid use >3 months, rheumatoid arthritis, and alcohol
use [27]. The FRAX algorithm is country specific and
intended for use in previously untreated postmenopausal
women and men 40 to 90 years of age. The NOF
recommends treatment in patients with a 10-year proba-
bility of a hip fracture �3% or a 10-year probability of a
major osteoporosis-related fracture �20% based on FRAX
[28].

Although DXA is an accurate screening tool, it remains
underused. According to 2 recent reports, only 6.7% of
patients underwent evaluation with DXA 6 months after
sustaining a fragility fracture in one study, and only 8% of
patients on long-term glucocorticoid therapy had follow-up
DXAs [29,30]. Underutilization may lead to under-
treatment in approximately 70% of these patients, and pa-
tients who are not adequately treated are at increased risk of
incurring additional fractures in their lifetime [7,29].

QCT. QCT also provides volumetric BMD (vBMD), and
both the trabecular and cortical bone compartments can be
assessed [31,32]. QCT can be performed on a vast majority
of commercially available CT scanners, provided they
include densitometry analysis software and a calibration
phantom. When interpreting QCT vBMD results, it is
important to recognize 2 important differences to DXA.
Z- and T-scores can be calculated from the vBMD, but
the T-scores do not apply to the WHO definition of
osteoporosis or osteopenia [31]. The exclusive application
of the WHO classification is inherent to projectional
BMD [25]. The ACR QCT cutoff values for low bone
mass or osteopenia are 80 to 120 mg/mL and <80 mg/
mL for osteoporosis [12]. Another major difference
between QCT and DXA is related to monitoring. Spine
BMD values measured by QCT demonstrate higher rates
of bone loss with advancing age, principally because of the
exclusive measurement of cancellous bone. The rate of
change in cancellous bone is significantly greater than that
of cortical bone. By contrast, the projectional properties of
DXA summate the cortically predominant end plates and
posterior elements with the cancellous vertebral body
measurements, thereby decreasing their rate of change over
time [31].

Projectional QCT of the hip is a technique that simu-
lates DXA-type images from QCT. It provides a calculated
measurement of areal BMD in the hip. Because the
Journal of the American College of Radiology
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postprocessed areal BMD is comparable to DXA, the WHO
classification definition of osteoporosis as a T-score ��2.5
is applicable to this CT technique [33].

Indications for utilization of QCT as a screening mo-
dality are the same as DXA. However, in the setting of
screening or initial imaging, QCT is regarded as a secondary
tool to DXA. QCT may be considered as a primary imaging
modality in certain conditions. Cases in which QCT is
considered superior to DXA include extremes in height
(very tall and very small patients), patients with obesity
(BMI >35 kg/m2), patients with severe degenerative spine
disease, and when an increased sensitivity to small changes
in trabecular bone density is desired (parathyroid hormone
and glucocorticoid treatment monitoring) [34]. It was
recently reported that opportunistic QCTs of the lumbar
spine was more predictive of spine fractures in
neurological and oncologic patients than reference DXA
scans, but there were only 84 patients in this study [35].

QUS. There is insufficient evidence to support the current
use of quantitative ultrasound (QUS) as a screening tool in
patients suspected of having osteoporosis or low BMD.
Dense structural complexity demonstrates increased atten-
uation, whereas osteoporotic bone demonstrates lower ve-
locities. The limitations of QUS are a lack of precision and
sensitivity [36]. Dedicated QUS scanners are available for
the calcaneus, phalanx, and tibia. However, the heel
represents the only validated site for the clinical use of
QUS. QUS does not measure BMD, and therefore, the
WHO classification system cannot be used and a
diagnosis of osteoporosis cannot be made. Discordance
between QUS and central DXA is not infrequent [37]. A
recent meta-analysis conducted to assess the role of QUS
in inflammatory rheumatic diseases came to the conclusion
that the current literature does not support the substitution
of QUS for DXA in the diagnosis and monitoring of oste-
oporosis in rheumatic diseases [38].

Radiography Appendicular Skeleton. There is insuffi-
cient evidence to support the current use of radiography as a
screening tool in patients suspected of having osteoporosis
or low BMD. Radiography is a projectional X-ray-based
technology that is widely used in current medical practice
for rapid image acquisition for an extensive number of in-
dications. Radiography use differences in electron density to
generate contrast between different tissues, including bone.
Although there are several standards used to identify dem-
ineralized bone on radiographs, radiography has a substan-
tially lower sensitivity to bone loss than DXA. Osteopenia is
not a reliable finding until 30% to 40% of the bone has
been lost [39]. Patients who have radiographic evidence of
osteopenia and/or fragility fractures should be referred to
DXA for further characterization.
Journal of the American College of Radiology
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Radiography Axial Skeleton. There is insufficient evi-
dence to support the current use of radiography as a
screening tool in patients suspected of having osteoporosis
or low BMD. Reportedly, patients with a low second
metacarpal index may have a higher risk for developing hip
fractures [40]. A recent study using artificial intelligence to
segment metacarpal morphometry has shown potential as
a screening tool with a sensitivity of 82.4% and specificity
of 95.7% and a pipeline accuracy of nearly 94% [41].
Patients who have radiographic evidence of demineralization
and/or fragility fractures should be referred to DXA for
further characterization.

SXA. There is insufficient evidence to support the current
use of single X-ray (SXA) in patients suspected of having
osteoporosis or low BMD. SXA is a projectional X-ray-based
technology that used one X-ray tube as a photon source and
was shown to precisely measure BMD at the forearm. It is
no longer widely used in current practice and has been
supplanted by DXA.

TBS. Although DXA provides an accurate evaluation of
BMD, it is not always an accurate predictor of fracture risk
because there is considerable overlap between BMD values
in individuals with and without fractures. Trabecular bone
score (TBS) is an independent predictor of fracture risk
because TBS values quantify bone microarchitecture, a
determinant of bone strength [42]. This analytical tool
performs textural analysis on 2-D lumbar spine DXA im-
ages and captures information by measuring grey-level
variations from one pixel to adjacent pixels, providing 3-
D bone characteristics such as trabecular number, trabec-
ular separation, and the connectivity density [43]. There is
evidence that TBS can differentiate between two 3-D
microarchitectures that exhibit identical BMD measure-
ments bone quality rather than bone quantity as measured
by DXA, QCT, and ultrasound. Elevated values of TBS
correlate with fracture resistance, whereas porous osteo-
porotic bone depict lower values than normal bone [44].
The advantages of TBS are that it can be assessed
retrospectively from previously obtained DXA scans
providing longitudinal data, and it is not impacted by
the presence of overlying calcifications or degenerative
changes in the spine [45].

In the setting of screening or initial imaging, TBS is
regarded as an adjunct tool to DXA. However, TBS should
not be used alone in clinical practice either to screen for
osteoporosis or for treatment decisions [17]. TBS may be
useful in certain populations. TBS when used in
conjunction with BMD, clinical risk factors, and/or FRAX
consistently enhances their accuracy [46-50]. Significantly
reduced TBSs are associated with fragility fractures in
secondary osteoporosis. In these patients, TBS has been
S423



found to have a substantially higher association with fracture
risk than BMD [51,52]. TBSs in patients with type 2
diabetes, chronic renal disease, glucocorticoid therapy,
rheumatoid arthritis, and hyperparathyroidism have
demonstrated increased fracture risk, even in the setting of
normal BMD [47,53].

Variant 2: Follow-up imaging of patients
demonstrated to have risk for fracture or
surveillance of established low bone mineral
density
Follow-up imaging is recommended in patients who have
increased risk for fracture, been previously diagnosed with
osteopenia or osteoporosis, or initiated treatment for oste-
oporosis. Additionally, as outlined in Variant 3, vertebral
fracture assessment (VFA) may be considered in patients
with documented spine fractures or if they have been
diagnosed with osteopenia and meet certain age criteria,
have experienced height loss or undocumented vertebral
fractures (VFs), or have a history of use of glucocorticoid
medication for >3 months.

DXA. Follow-up DXA scanning is important for moni-
toring patients who have low BMD, either for progression
or therapeutic response, and in those with normal BMD
who have increased fracture risk and/or diminishing bone
mass. The measurement of hip BMD continues to be the
most reliable way of evaluating hip fracture risk, whereas
imaging of the spine is optimal for monitoring treatment
response. It is essential for patients to be scanned on the
same DXA machine because differences in vendor technol-
ogies prohibit a direct comparison unless cross calibration
has been performed [54]. Obtaining a quality BMD
measurement every time underscores its importance
because it is the BMD values, not T-scores, that are
compared between scans [55]. BMD measurements do
not need to be repeated routinely in patients with
osteopenia unless the baseline T-score is <�2.0 or risk
factors develop [56].

When a nontreated patient has a statistically significant
decrease in BMD on follow-up DXA, therapy initiation may
be considered in the setting of confirmed primary osteo-
porosis or when there is clinical correlation identifying po-
tential secondary causes of osteoporosis [57]. Serial BMD
testing combined with clinical risk factors, bone turnover
markers, and other factors such as height loss and TBS
may also be used to determine whether treatment should
be initiated. Patients receiving treatment who demonstrate
decreasing BMD on follow-up scans may require an
adjustment in their pharmacotherapy regimen [24].

In the majority of patients, the time interval for moni-
toring is based on the change rate of bone mineralization,
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which is typically about 2 years; however, it is preferable for
this interval to be shorter (1 to <2 years) after therapy has
been initiated [23]. Patients who are at high risk for a more
rapid decline of bone mass, such as those receiving
glucocorticoid therapy, also require shorter intervals
between imaging; 1-year intervals after initiation or change
of therapy is appropriate with progressively longer intervals
once therapeutic effect is established [58]. Scan intervals <1
year are discouraged [24]. Serial BMD testing is encouraged
in individuals after cessation of pharmacologic therapy for
osteoporosis as well.

Forearm BMD measurements should be performed
under the following circumstances; when the hip and/or
spine cannot be measured or interpreted, in patients with
primary and secondary hyperparathyroidism, and in patients
who exceed the weight limit for the DXA table. In older
patients with chronic kidney disease, the percentage of pa-
tients with osteopenia and osteoporosis has been shown to
increase with chronic kidney disease progression; the
decrease in BMD predominantly affects the hip and not the
spine [59]. According to the Third International Workshop
on Hyperparathyroidism, patients with hyperparathyroidism
with T-scores ��2.5 at any of the 3 routinely measured
sites should be scanned every 1 to 2 years as well as
undergo a parathyroidectomy [60].

DXA VFA. In this setting, use of VFA is not supported.
This differs from Variant 3, in which VFA may be
considered in patients with documented spine fractures or
if they have been diagnosed with osteopenia and meet
certain age criteria, have experienced height loss or
undocumented VFs, or have a history of use of
glucocorticoid medication for >3 months [17].

QCT. QCT is regarded as a secondary or adjunct tool to
DXA. QCT may be useful in unique populations in which
there is a need for added precision. QCT demonstrates
excellent precision and reproducibility to changes and can be
used for the monitoring of BMD in untreated and treated
patients provided that there is routine calibration [22].
QCT is more sensitive to change than DXA because it
detects mineralization in the cancellous bone, the portion
of bone most sensitive to rapid changes, as well as at the
cortex, such as newly formed bone in the cortical and
subcortical compartments [61-63]. Femoral neck and total
hip T-scores calculated from follow-up projectional QCT
data are equivalent to corresponding DXA T-scores for
monitoring of osteoporosis in accordance to the WHO
criteria, and can be used longitudinally [22].

QUS. There is insufficient evidence to the support the
routine use of QUS for monitoring of untreated and treated
patients.
Journal of the American College of Radiology
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SXA. There is insufficient evidence to the support the
routine use of SXA for monitoring of untreated and treated
patients.

TBS. TBS is regarded as an adjunct tool to DXA. TBS may
be useful in a small population in which there is a need to
look at marginal changes beyond BMD. TBS may be of
benefit stratifying risk in individuals with relatively normal
or osteopenic BMD values because most fractures occur in
this subset of nonosteoporotic patients. Multiple studies
have shown associations of TBS with fractures in post-
menopausal women as well as a few fractures in men [64-
68].

TBS may be of benefit stratifying risk in individuals
with relatively normal or osteopenic BMD values because
most fractures occur in this subset of nonosteoporotic pa-
tients. Multiple studies have shown associations of TBS with
fractures in postmenopausal women, as well as a few frac-
tures in men [64-68].

TBS is potentially useful for monitoring anabolic ther-
apy, but its role in monitoring antiresorptive therapy is
unclear [69-72]. There are data to indicate that in follow-up,
smaller changes are more evident in TBS than in BMD,
especially in patients with degenerative disease of the spine.
In a clinical scenario in which there is discordance between
the spine and hip BMD, TBS may provide additional in-
formation of the patient’s fracture risk. In patients with a
normal BMD but a low TBS and multiple fractures, changes
in TBS may influence therapeutic management [73].

Variant 3: Follow-up imaging. Patients with
T-scores less than �1.0 (by DXA) and one or
more of the following: 1) Females equal to or
greater than 70 years of age or males equal to
or greater than 80 years of age; 2) Historical
height loss greater than 4 cm (greater than 1.5
inches); 3) Self-reported but undocumented
prior vertebral fracture; 4) Glucocorticoid
therapy equivalent to equal to or greater than
5 mg of prednisone or equivalent per day for
equal to or greater than 3 months
VF are the most common osteoporotic fracture, particularly in
postmenopausal women. The majority of these fractures are
clinically silent, meaning that they do not elicit sufficient pain to
warrant clinical evaluation or imaging [74]. Patients who sustain
a VF have a high predilection for developing a subsequent VF;
therefore, detection is a strong predictor of high fracture risk
independent of BMD [75,76]. Numerous modalities are
available for diagnosing suspected fractures in the spine.

DXA. Follow-up DXA is supported for monitoring pa-
tients who have low BMD and VF risk factors [56].
Journal of the American College of Radiology
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DXA VFA. In their 2019 guidelines, the ISCD recom-
mended that densitometric spine imaging, or VFA, be
considered for the listed indications in this variant [17].
VFA is a feature of DXA scanners in which a lateral
thoracic and lumbar spine image from T5 to L5 is
provided for the purpose of detecting vertebral body
deformities; most VFs occur between the T7 and L4 levels
[77]. This procedure is complementary to DXA; the
image is obtained during the DXA session and represents
a point-of-care service. A semiquantitative visual method
used for diagnosis characterizes the morphology based on
shape (wedge, concave, or crush) and location (anterior,
posterior, and/or middle) and the total number of involved
vertebrae [78,79]. In general, grade 2 fractures (moderate or
26%-40% reduction) and grade 3 fractures (severe or >40%
reduction) are more predictive of future fractures than grade
1 fractures (mild or 20%-25% reduction), which have a
greater overlap with nonfracture deformities [80]. A
solitary, asymptomatic grade 1 fracture is likely to be
minimal to no clinical significance, whereas a grade 3
fracture is an important predictor of fracture risk not only
in the spine but also in nonvertebral sites [81].

It is estimated that two-thirds of radiographically evident
VFs are not recognized clinically and are incidentally
detected [82]. Numerous epidemiologic studies have
provided the incidence and prevalence of VFs in different
populations [83-85]. The risk for developing a VF rises
substantially in women after >70 years of age and in men
>80 years of age [86-88]. In patients with chronic
exposure to glucocorticoid medication, the prevalence of
VF is >50% in those >70 years of age, approximately
17% in patients treated for autoimmune disease, and 22%
in patients with Crohn disease [89-91]. The incidence is 2
to 2.5 times higher in women than in men [77].

The utility of VFA is identifying patients who would not
otherwise qualify for treatment under the guidelines of the
NOF, which are based solely on BMD measurements.
Multiple studies have demonstrated populations of patients
who were reclassified because of detection of VFs [92-95]. A
study in the Netherlands demonstrated that 60% of patients
with a fracture on VFA were in the nonosteoporotic range,
and of these, 74% were previously unknown to have
fractures [92]. In another recent study of postmenopausal
women, 17.2% of patients had their diagnosis upgraded
to severe osteoporosis owing to VFs diagnosed on VFA
[96]. A meta-analysis based on VFA-detected VFs reported
that among women who had prevalent VFs, up to 43% had
low BMD (osteopenia), and up to 32% had normal bone
density [76]. Detection of unknown VFs influences
initiating therapy in asymptomatic patients as well as
guides therapeutic decisions in treated patients whose
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BMD may have remained stable or shown improvement on
DXA [97].

QCT. QCT is regarded as a secondary or adjunct tool to
DXA. It may be considered as a primary modality in cases in
which there is severe degenerative disease of the spine or
significant scoliosis (see Variant 6) and when it is desirable
to have higher spatial resolution to optimize bone detail.

QUS. There is insufficient evidence to support the use of
QUS to image the spine.

Radiography Appendicular Skeleton. There is insuffi-
cient evidence to support the use of appendicular radiog-
raphy to image the spine.

Radiography Axial Skeleton. Lateral radiographs of the
spine may be considered when VFA is not diagnostic or
when images cannot be adequately derived. Additionally,
radiographs of the spine may be considered as an alternative
to VFA in patients who have low BMD and risk factors for
developing VFs [17]. The benefit of radiography over VFA
is superior spatial resolution. The sharp delineation of the
end plates and cortical margins affirms confident detection
of subtle Genant grade 1 fractures [98]. When reporting
the severity of a vertebral body defect, the semiquantitative
methodology by Genant should be used [78].

SXA. There is insufficient evidence to support the use of
SXA to image the spine.

TBS. TBS is regarded as an adjunct tool to DXA. TBS may
be useful in a small population in which there is a need to
look at marginal changes beyond BMD. TBS enhances
FRAX in patients whose BMD level lies close to the inter-
vention threshold and may provide data that facilitates
treatment decisions, but TBS should not be used by itself in
monitoring patients with VF risk factors [47].

Variant 4: Initial imaging for premenopausal
females or males less than 50 years of age.
Individual with risk factors that could alter
bone mineral density

1. Individuals with medical conditions that could alter
BMD, such as:
a. Chronic renal failure
b. Rheumatoid arthritis and other inflammatory

arthritides
c. Eating disorders, including anorexia nervosa and

bulimia
d. Organ transplantation
e. Prolonged immobilization
f. Conditions associated with secondary osteoporosis,
such as gastrointestinal malabsorption or malnutrition,
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sprue, osteomalacia, vitamin D deficiency, endometri-
osis, acromegaly, chronic alcoholism or established
cirrhosis, and multiple myeloma

g. Individuals who have had gastric bypass for obesity.
The accuracy of DXA in these patients might be
affected by obesity

h. Individuals with an endocrine disorder known to
adversely affect BMD (eg, hyperparathyroidism, hy-
perthyroidism, or Cushing syndrome)

2. Individuals receiving (or expected to receive) glucocorti-
coid therapy for >3 months

3. Hypogonadal men >18 years of age and men with sur-
gically or chemotherapeutically induced castration

4. Individuals beginning or receiving long-term therapy
with medications known to adversely affect BMD (eg,
anticonvulsant drugs, androgen deprivation therapy,
aromatase inhibitor therapy, or chronic heparin).

DXA. The data providing imaging guidance in premeno-
pausal women are few. The literature indicates that DXA
remains the primary screening modality for evaluating bone
mineralization in patients with these clinical scenarios [99].
Screening BMD should not be performed in premenopausal
women. The 2 exceptions are young women with a history
of fractures from minor trauma and those who have known
causes of bone loss [100,101]. Chronic disease damage and
low BMI are reported as risks factors for low BMD in
premenopausal systemic lupus erythematosus patients, and
early monitoring and/or treatment may prevent severe
bone loss and future fractures [102]. In the 2017
American College of Rheumatology guidelines on
glucocorticoid-induced osteoporosis, adults receiving
glucocorticoid therapy for >3 months and who have had a
prior fracture or other risk factors should have their BMD
evaluated every 2 to 3 years [103]. In organ transplant
patients, owing to rapid bone loss in the first 6 to 12
months after transplantation, the same imaging guideline
was proposed [103].

A baseline DXA should be considered in women age
<40 years of age who experience premature menopause for
any reason, especially when menopause was induced by
chemotherapy. In untreated women undergoing initiation of
an aromatase inhibitor, bone loss is most marked in the 12
to 24 months [104]. Men who undergo androgen
deprivation therapy have substantially elevated risk of
fracture. A baseline DXA study in men receiving androgen
deprivation therapy should be considered after 6 months
of therapy [105].

The WHO criteria for osteoporosis do not apply, and
only Z-scores (not T-scores) should be reported [57]. The
Z-score represents gender- and age-matched controls for
the evaluation of secondary osteoporosis. Z-scores of ��2.0
Journal of the American College of Radiology
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are defined as “below the expected range for age,” and
Z-scores >�2.0 are “within the expected range for age”
[106]. Z-scores should be population specific where
adequate reference data exist, and the patient’s self-
reported ethnicity should be used in the calculation of the
Z-scores. A diagnosis of osteoporosis cannot be made in
men <50 years of age on the basis of BMD alone [17].

QCT. There is insufficient evidence to support the use of
QCT as a screening study in this group of patients. A study
using QCT in premenopausal women with idiopathic
osteoporosis demonstrated good correlation between vBMD
by QCT and areal BMD by DXA [107]. These results are
consistent with 3-D bone imaging at the iliac crest, radius,
and tibia in premenopausal idiopathic osteoporosis and
suggest that the term osteoporosis may be appropriate in
women with Z-scores <�2.0, whether or not there is a
history of fracture [107]. An alternative study demonstrated
a weak relationship between peripheral and central
mechanical competence [108].

QUS. There is insufficient evidence to support the use of
QUS as a screening study in this group of patients. The
correlation between QUS parameters and DXA has been
reported to be lower in premenopausal women than in
postmenopausal women and not predictive of osteoporosis
[109].

Radiography Appendicular Skeleton. There is insuffi-
cient evidence to support the use of radiography appendic-
ular skeleton as a screening study in this group of patients.

Radiography Axial Skeleton. There is insufficient evi-
dence to support the use of radiography axial skeleton as a
screening study in this group of patients.

SXA. There is insufficient evidence to support the use of
SXA as a screening study in this group of patients.

TBS. There is insufficient evidence to support the use of
TBS as a screening study in this group of patients.
Variant 5: Premenopausal females with risk
factors. Males less than 50 years of age with
risk factors. Follow-up to low bone mineral
density

1. Individuals with medical conditions that could alter
BMD, such as:
a. Chronic renal failure
b. Rheumatoid arthritis and other inflammatory

arthritides
c. Eating disorders, including anorexia nervosa and

bulimia
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d. Organ transplantation
e. Prolonged immobilization
f. Conditions associated with secondary osteopo-
rosis, such as gastrointestinal malabsorption or
malnutrition, sprue, osteomalacia, vitamin D
deficiency, endometriosis, acromegaly, chronic
alcoholism or established cirrhosis, and multiple
myeloma

g. Individuals who have had gastric bypass for obesity.
The accuracy of DXA in these patients might be
affected by obesity

h. Individuals with an endocrine disorder known to
adversely affect BMD (eg, hyperparathyroidism, hy-
perthyroidism, or Cushing syndrome)

2. Individuals receiving (or expected to receive) glucocorti-
coid therapy for >3 months

3. Hypogonadal men >18 years of age and men with sur-
gically or chemotherapeutically induced castration

4. Individuals beginning or receiving long-term therapy
with medications known to adversely affect BMD
(eg, anticonvulsant drugs, androgen deprivation
therapy, aromatase inhibitor therapy, or chronic
heparin).

Follow-up for premenopausal women as well as for men
20 to <50 years of age is based on the underlying clinical
conditions listed. Most expert groups recommend moni-
toring time interval of 1 to 2 years if there is a high risk for
accelerated bone loss, but otherwise every 2 years if there are
risk factors [24].

DXA. The literature indicates that DXA is the primary
modality by which to monitor BMD in premenopausal
women as well as adult men <50 years of age with risk
factors [24]. The need for follow-up DXA is dictated by the
clinical circumstance of the patients.

QCT. QCT is regarded as a secondary or adjunct tool to
DXA. QCT may allow for monitoring BMD in premeno-
pausal women and men between 20 to 50 years of age with
risk factors. QCT demonstrates excellent precision and
reproducibility to changes [31].

QUS. There is insufficient evidence to support the use of
QUS to monitor premenopausal women or adult men <50
years of age with risk factors.

SXA. There is insufficient evidence to support the use of
SXA to monitor premenopausal women or adult men <50
years of age with risk factors.

TBS. There is insufficient evidence to support the use of
TBS to monitor premenopausal women or adult men <50
years of age with risk factors.
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Variant 6: Males and females greater than or
equal to 50 years of age. Suspected
osteoporosis. Advanced degenerative
changes of the spine with or without scoliosis,
or other conditions that may spuriously
elevate BMD. Initial imaging

DXA. DXA allows for screening patients with risk factors
and advanced degenerative changes in the spine. In a routine
DXA examination, both the lumbar spine and hip are
scanned and measured. Owing to the projectional nature of
DXA, spuriously elevated BMD values of the lumbar spine
may be caused by spondylosis and degenerative facet oste-
oarthritis or dense overlying tissue. Reportedly, in exami-
nations with falsely elevated measurements, the most
common cause (>81%) is degenerative disease of the spine
[110]. The ISCD recommends close inspection of the
images and associated BMD values to monitor levels for
exclusion. In patients with ankylosing spondylitis, a
moderate correlation and fair agreement between the
T-scores of hip and the lumbar spine has been reported,
suggesting that DXA of the hip and the lumbar spine may
both be useful for screening in patients with ankylosing
spondylitis without fused spines [111].

In addition to degenerative changes in the spine, BMD
measurements using DXA may also be spuriously elevated in
patients with hemoglobinopathies who have an iron-
overloaded liver and in patients with severe abdominal cal-
cifications [112,113].

QCT. The literature indicates that QCT is ideally suited
for the evaluation of the spine in the setting of advanced
degeneration of the spine; it is preferred over DXA for
monitoring under these conditions as well. Because it
selectively samples only the cancellous portion of the
vertebral body and excludes the end plates, cortices, and
posterior elements, BMD using QCT is generally not
negatively impacted by arthritis in the spine and has greater
sensitivity to change than in DXA in this group of patients
[32,114]. It also may provide adjunctive information in
preoperative patients who may have diminished bone
density [115].

QUS. There is insufficient evidence to support the use of
QUS as a screening study for low BMD in patients with
advanced degenerative changes in the spine.

Radiography Appendicular Skeleton. There is insuffi-
cient evidence to support the use of radiography appendic-
ular skeleton as a screening study for low BMD in patients
with advanced degenerative changes in the spine.

Radiography Axial Skeleton. There is insufficient evi-
dence to support the use of radiography axial skeleton as a
S428
screening study for low BMD in patients with advanced
degenerative changes in the spine.

SXA. There is insufficient evidence to support the use of
SXA as a screening tool for low BMD in patients with
advanced degenerative changes in the spine.
SUMMARY OF RECOMMENDATIONS

n Variant 1: DXA lumbar spine and hip(s) is usually
appropriate for osteoporosis screening or initial
imaging of clinically suspected low BMD.

n Variant 2: DXA lumbar spine and hip(s) is usually
appropriate for the follow-up imaging of patients
demonstrated to have risk for fracture or surveillance of
established low BMD.

n Variant 3: DXA lumbar spine and hip(s) and DXA
VFA is usually appropriate for the follow-up imaging
of patients with T-scores less than �1.0 (by DXA) and
one or more of the following: 1) Females equal to or
greater than 70 years of age or males equal to or greater
than 80 years of age; 2) Historical height loss greater
than 4 cm (greater than 1.5 inches); 3) Self-reported
but undocumented prior VF; 4) Glucocorticoid ther-
apy equivalent to equal to or greater than 5 mg of
prednisone or equivalent per day for equal to or greater
than 3 months. VFA and DXA are complementary
procedures that are performed concomitantly allowing
point-of-care service at the same visit that one obtains a
BMD measurement.

n Variant 4: DXA lumbar spine and hip(s) is usually
appropriate for the initial imaging of patients with
risk factors that could alter BMD including
premenopausal females or males less than 50 years of
age.

n Variant 5: DXA lumbar spine and hip(s) is usually
appropriate for the imaging follow-up to low BMD
of patients with risk factors including premenopausal
females or males less than 50 years of age with risk
factors.

n Variant 6: DXA distal forearm or DXA lumbar spine
and hip(s) or QCT lumbar spine and hip is usually
appropriate for the initial imaging of clinically
suspected osteoporosis in patients with advanced
degenerative changes of the spine with or without
scoliosis, or other conditions that may spuriously
elevate BMD. These procedures are equivalent
alternatives (ie, only one procedure will be ordered to
provide the clinical information to effectively manage
the patient’s care).
Journal of the American College of Radiology
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SUPPORTING DOCUMENTS
The evidence table, literature search, and appendix for this
topic are available at https://acsearch.acr.org/list. The ap-
pendix includes the strength of evidence assessment and the
final rating round tabulations for each recommendation.

For additional information on the Appropriateness
Criteria methodology and other supporting documents go to
www.acr.org/ac.
RELATIVE RADIATION LEVEL INFORMATION
Potential adverse health effects associated with radiation
exposure are an important factor to consider when selecting
the appropriate imaging procedure. Because there is a wide
range of radiation exposures associated with different diag-
nostic procedures, a relative radiation level (RRL) indication
has been included for each imaging examination. The RRLs
are based on effective dose, which is a radiation dose
quantity that is used to estimate population total radiation
risk associated with an imaging procedure. Patients in the
pediatric age group are at inherently higher risk from
exposure, because of both organ sensitivity and longer life
expectancy (relevant to the long latency that appears to
accompany radiation exposure). For these reasons, the RRL
dose estimate ranges for pediatric examinations are lower as
compared with those specified for adults (see Table 2).
Additional information regarding radiation dose assessment
for imaging examinations can be found in the ACR
Appropriateness Criteria� Radiation Dose Assessment
Introduction document [116].
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	SXA
	TBS

	Variant 4: Initial imaging for premenopausal females or males less than 50 years of age. Individual with risk factors that  ...
	DXA
	QCT
	QUS
	Radiography Appendicular Skeleton
	Radiography Axial Skeleton
	SXA
	TBS

	Variant 5: Premenopausal females with risk factors. Males less than 50 years of age with risk factors. Follow-up to low bon ...
	DXA
	QCT
	QUS
	SXA
	TBS

	Variant 6: Males and females greater than or equal to 50 years of age. Suspected osteoporosis. Advanced degenerative change ...
	DXA
	QCT
	QUS
	Radiography Appendicular Skeleton
	Radiography Axial Skeleton
	SXA
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