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Abstract 
Myriad questions regarding perioperative management of patients on glucocorticoids (GCs) continue to be debated including which patients are 
at risk for adrenal insufficiency (AI), what is the correct dose and duration of supplemental GCs, or are they necessary for everyone? These 
questions remain partly unanswered due to the heterogeneity and low quality of data, studies with small sample sizes, and the limited 
number of randomized trials. To date, we know that although all routes of GC administration can result in hypothalamic-pituitary-adrenal 
(HPA) axis suppression, perioperative adrenal crisis is rare. Correlation between biochemical testing for AI and clinical events is lacking. Some 
of the current perioperative management recommendations based on daily GC dose and duration of therapy may be difficult to follow in 
clinical practice. The prospective and retrospective studies consistently report that continuing the daily dose of GCs perioperatively is not 
associated with a higher risk for adrenal crises in patients with GC-induced AI. Considering that oral GC intake may be unreliable in the early 
postoperative period, providing the daily GC plus a short course of IV hydrocortisone 25 to 100 mg per day based on the degree of surgical 
stress seems reasonable. In patients who have stopped GC therapy before surgery, careful assessment of the HPA axis is necessary to 
avoid an adrenal crisis. In conclusion, our literature review indicates that lower doses and shorter duration of supplemental GCs 
perioperatively are sufficient to maintain homeostasis. We emphasize the need for well-designed randomized studies on this frequently 
encountered clinical scenario.
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Glucocorticoids (GCs) are one of the most commonly pre-
scribed drugs with an estimated use prevalence of approxi-
mately 1% of the US population [1]. They are very effective 
anti-inflammatory medications and considered first-line treat-
ment for many autoimmune conditions. One important conse-
quence of supraphysiological and/or long-term GC treatment 
is the potential for hypothalamic-pituitary-adrenal (HPA) axis 
suppression leading to GC-induced adrenal insufficiency (AI), 
which is associated with increased morbidity and mortality 
[2]. When associated with a stressor such as a surgical proced-
ure, HPA axis suppression can result in adrenal crisis. This 
outcome was recognized in early-20th-century studies when 
adrenalectomized dogs experienced circulatory shock after 
laparotomy that could be prevented by administering GCs 
[3, 4]. In the 1950s, multiple reports described patients on 
chronic GC therapy for rheumatoid arthritis who died shortly 
after orthopedic surgery. Postmortem examinations consist-
ently revealed bilateral adrenal atrophy, leading to the conclu-
sion that the adrenal glands’ inability to respond to surgical 
stress was the cause of death [5–7]. The resultant concern 
about postoperative adrenal crisis in patients on GCs led to 

the routine use of high-dose perioperative GC replacement 
in clinical practice.

Currently, there is little high-quality evidence supporting rou-
tine perioperative use of high-dose GCs [8–11]. While under-
dosing perioperative GCs may place patients at risk for 
cardiovascular collapse, high doses carry a risk of hypergly-
cemia, hypertension, opportunistic infections, bone loss in a 
state of immobility, venous thromboembolism, and poor 
wound healing [12–14]. This review outlines the key physio-
logic aspects of the stress response to surgery, the effect of differ-
ent forms of GCs on the HPA axis, the evidence for 
perioperative GC administration, and our personalized ap-
proach to perioperative management in adults with 
GC-induced AI.

Regulation of the HPA Axis Perioperatively
The HPA axis is regulated by the classic negative feedback of 
cortisol as well as other neurohumoral inputs including vaso-
pressin, the autonomic nervous system, inflammation, and 
opioids (Fig. 1). This results in an estimated production of 
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about 5.7 mg/m2 or 9.9 mg of cortisol per day in healthy 
adults which could increase to >100 mg during times of major 
stress [8, 15–17]. In plasma, the majority of cortisol (approxi-
mately 90%) binds tightly to corticosteroid-binding globulin 
(CBG) and loosely to albumin (∼5%); the remaining (∼5%) 
is the active, free fraction [18, 19]. Free cortisol binds to the 
glucocorticoid receptors in the target cell’s cytoplasm. After 
glucocorticoids bind to its receptor, this complex translocates 
to the nucleus regulating the transcription, inducing or repres-
sing a multitude of genes [20]. Glucocorticoid receptors are 
ubiquitously distributed in the body, including the hypothal-
amus and pituitary, where cortisol exerts a negative feedback 
[21]. Other rapid, nongenomic effects have been recognized 
over the past decades. Known mechanisms thought to mediate 
these actions include GC interaction with nonspecific cellular 
membrane receptors, cytosolic GC receptor mediating nonge-
nomic effects, and membrane-bound GC receptors [22]. These 
nongenomic effects can involve activation of distinct signaling 
pathways that includes cAMP, with activation of multiple kin-
ases, increase in intracellular calcium concentrations; as well 
as intracellular receptors that targets mitochondrial gene ex-
pression, all of these with a recognized tissue specificity [23]. 
These nongenomic mechanisms of action are highly relevant 
in the development of new drugs with higher selectivity and 
better side-effect profile compared to the classic GCs targeting 
the genomic actions.

Cortisol’s actions are further regulated by enzymatic trans-
formation of its active and inactive forms. In the kidney, co-
lon, salivary glands, and placenta, 11-β-hydroxysteroid 
dehydrogenase type 2 inactivates cortisol into cortisone, pro-
tecting these tissues from overstimulation of the mineralocor-
ticoid receptor. In most other tissues, but mainly in the liver, 
11-β-hydroxysteroid dehydrogenase type 1 converts cortisone 
into cortisol, augmenting the GC effects when needed [28].

Multiple factors determine the degree of HPA axis activa-
tion during a surgical procedure. Individual factors, including 
genetics, age, sex, comorbidities, and medications, as well as 
perioperative factors, such as type and duration of anesthesia 
and operative procedure and perioperative complications, 
contribute to the heterogeneity seen in studies evaluating the 
HPA axis response [29].

Different types of surgical procedures generate different de-
grees of HPA axis activation [29–31]. Criteria to stratify the 
degree of surgical risk (Grade I-III), independent from the an-
esthetic risk, are summarized in Table 1 [32]. Multiple studies 
including a systematic review and meta-analysis of 71 studies 
including 2953 patients show that cortisol levels increase in 
proportion to the grade of surgery [29–31, 33, 34]. In Grade 
I procedures, no intraoperative cortisol peak is observed, 
whereas in Grade II procedures, peak cortisol occurs at the 
time of extubation and returns to baseline at 24 hours 
[29, 30]. With Grade III procedures, peak cortisol occurs 6 
to 18 hours postoperatively, persists for 24 hours, and returns 
to baseline by postoperative day 5 to 7 [29–31, 33, 34]. 
Therefore, the maximum activation of the HPA axis occurs 
within the first 24 hour postoperatively, returning to baseline 
in <7 days even in patients undergoing Grade III operations 
[35, 36].

To understand the perioperative HPA axis response, 
Udelsman et al measured blood samples every 10 minutes dur-
ing and after Grade II neck operations performed with identi-
cal sedation and anesthetic regimens. Interestingly, CRH, 
ACTH, and cortisol levels were unchanged intraoperatively. 

However, there was a marked elevation in ACTH and cortisol 
levels during anesthetic reversal, endotracheal extubation, 
and immediately postoperatively [37]. In contrast, in Grade 
III operations, cortisol remained elevated on postoperative 
day 2, but there was a marked reduction in CRH and 
ACTH levels [38]. A recently reported significant decrease in 
cortisol clearance during critical illness could explain this 
postoperative day 2 dissociation between CRH/ACTH and 
cortisol levels through negative feedback [39]. Furthermore, 
neural regulation of the HPA axis seem to have an important 
role in the modulating the stress response to surgical proce-
dures. Studies showing that epidural or local anesthesia can 
interrupt HPA axis activation following a surgical incision 
highlight its role [40, 41]. Also, the sympathetic nerves of 
the adrenal cortex can facilitate the ACTH response [42].

In addition to an increase in cortisol secretion, immediately 
postoperatively there is an approximately 30% to 50% de-
crease in CBG, and this reduction persists at 24 hours after 
surgery, resulting in elevated free cortisol levels [43, 44]. 
This increment in free cortisol could be associated with in-
flammation, given that interleukin-6 decreases CBG concen-
tration by about half and the affinity of CBG for cortisol is 
reduced by neutrophil activation and fever, both common 
perioperatively [18, 45].

Perioperative Symptoms of Adrenal 
Insufficiency and Cardiovascular Collapse
GCs have an essential role in the regulation of vascular tone, 
cardiac, and adrenomedullary function. In blood vessels, 
they have a permissive role in the action of vasoactive substan-
ces, particularly catecholamines [46, 47]. Additionally, GCs 
promote vasoconstriction by inhibiting endothelial produc-
tion of nitric oxide and prostacyclin [17, 47], upregulating 
angiotensin II receptor AT1 [48] as well as increasing α-1 ad-
renergic receptors and norepinephrine-binding affinity in the 
vascular smooth muscle cells [47, 49]. Accordingly, during 
an adrenal crisis, there is a markedly reduced vascular tone re-
sulting in hypotension that can eventually become refractory 
to vasopressors.

In the heart, GCs increase contractility by increasing the 
expression of genes that regulate intracellular calcium concen-
trations [50]. Studies in AI reported reduced stroke volume 
and cardiac index with increased systemic arterial resistance 
independent of changes in serum sodium and potassium 
levels [51, 52]. Additionally, AI has been associated with 
high-output heart failure that can resemble the septic shock- 
associated loss of vascular tone [52, 53]. These 2 hemodynam-
ic profiles associated with hypotension depends on the degree 
of fluid resuscitation and the time the right heart catheteriza-
tion is performed [52]. Patients with AI may have prolonga-
tion of the PR interval, which can reach a first-degree AV 
block or worsen the underlying AV conduction abnormalities 
[54]. These effects on cardiac output and the conduction 
system in AI can be reversed by GC replacement [55–57].

Adrenal medullary development and function are highly 
dependent on the presence of adequate amounts of cortisol 
[58, 59]. The expression and activity of phenylethanolymine 
N-methyltransferase, the enzyme that converts norepinephrine 
into epinephrine, requires a high intra-adrenal cortisol concentra-
tion that is maintained by the adrenoportal system between the 
cortex and the medulla [60]. Glucocorticoids also inhibit 
catechol-O-methyl-transferase, resulting in decreased clearance 
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of epinephrine [47]. Therefore, the adrenomedullary function 
can become severely compromised in AI with markedly low levels 
of epinephrine at baseline and incomplete response during stress 
[61].

Beyond cardiovascular instability and collapse, the symp-
toms of AI in the perioperative period can be subtle and 
may be missed due to their similarity to common post-
operative complaints including anorexia, fatigue, nausea, 
vomiting, abdominal pain, muscle cramps, weakness, dizzi-
ness, and lethargy [62]. The clinical team must be aware of 
GC withdrawal symptoms that may occur in patients on 
chronic GC on a fast perioperative taper; these patients who 
may experience AI-type symptoms despite being maintained 
on supraphysiological GC doses [63, 64].

The HPA Axis in Patients Using Glucocorticoids
Pharmacological Properties of Glucocorticoids
Glucocorticoids have historically been classified as short, 
intermediate, and long-acting according to their biological 
half-life (Table 2). However, GCs have many other variable 
pharmacologic properties, including administration route, 
potency, and affinity for the GC receptor, resulting in a hetero-
geneous group of drugs with different potentials to suppress 
the HPA axis.

In general, the absorption rate after oral administration is 
rapid (30-45 minutes) and similar among different prepara-
tions with bioavailability ranging from 60% to almost 
100% [69,70]. Intramuscular absorption is rapid, whereas 
the absorption after subcutaneous injections is slightly slower 
depending on the amount of adipose tissue present [71]. 
Systemic absorption from other formulations such as inhaled, 
topical, ophthalmic, buccal, or rectal administration is lower, 
but all can potentially suppress the HPA axis [72]. Topical and 
mucosal absorption of GCs depends on the integrity of the 
skin/epithelial barrier, which is modified by inflammation 
and influenced by the thickness of skin [72]. Certain GCs 

such as Triamcinolone after intra-articular and epidural injec-
tion are slowly absorbed resulting in sustained supraphysio-
logical concentration. Oral budesonide has a high first-pass 
effect in the liver where about 90% is inactivated. Despite 
this, HPA axis suppression and cases of adrenal crises have 
been reported [73, 74].

Incidence of Postoperative Adrenal Insufficiency
Postoperative AI in patients on chronic GCs is rare [8, 17, 75]. 
However, establishing the true incidence is challenging. In 
many cases, hypotension that resolves in response to GCs, in 
the absence of an alternative explanation, has been used as 
the criteria to establish the diagnosis of AI. A 1994 review 
of 57 cases of patients on chronic GCs who died possibly 
from postoperative adrenal crisis found confirmation in only 
3 cases [8]; this and other reports [33, 76] indicate that 
post-op AI may not be as common as initially thought. In 
some instances, alternative etiologies such as major blood 
loss, anaphylaxis, or sepsis could have explained the 
postoperative hypotension. However, the incidence of post-
operative AI may be underreported since reporting such 
statistics may be undesirable for hospitals. There is a clear 
need for further studies in this subject.

Risk for HPA Axis Suppression in Different Clinical 
Scenarios
The risk for HPA axis suppression in relation to GC exposure 
depends on multiple factors including the type of GC, ability 
of the drug to reach the systemic circulation, dose, and dur-
ation of treatment. However, the exact dose and duration 
that results in clinically significant AI has been a matter of de-
bate [64, 77–80]. In general, systemic treatments, long-acting 
GCs, higher doses, longer duration of therapy, higher po-
tency, nighttime administration, multiple cycles of treatment, 
and multiple daily doses carry a higher risk for HPA axis sup-
pression and AI [64, 77–82]. Cushingoid features should alert 

Figure 1. The hypothalamic-pituitary-adrenal axis regulation [24–27].
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clinicians of the presence of HPA suppression. Stopping 
chronic GCs close to an operation may have a significant im-
pact on the risk for postoperative AI. Regardless, there is a 
poor correlation between biochemical HPA axis suppression 
and clinical outcome (AI) [77–80, 83, 84].

Oral glucocorticoids
The daily requirement of a patient with AI to maintain basal, 
nonstressed body functions is approximately 4 to 5 mg pred-
nisone equivalent per day. To stratify the risk of HPA axis sup-
pression, GC intake may be divided into low dose (<5 mg 
prednisone equivalent), medium dose (5-20 mg), and high 
dose (>20 mg) per day. The duration of GC exposure can be 
considered as short-term (<1 month), intermediate-duration 
(between 1-3 months), and long-term (>3 months). 
However, these subclassifications have a role in perioperative 
management of patients if there is a plan to stop GCs before 
the procedure. Otherwise, most patients should receive a short 
course of GCs perioperatively based on the level of surgical 
stress and then return to their basal dose as they recover.

Low-dose GCs administered in the morning, for any dur-
ation of time, seem to have a low risk of causing clinically sig-
nificant AI. In a study of 50 patients on long-term prednisone 
(mean duration approximately 4 years), those receiving 
<5 mg/day showed a normal or near-normal response to the 
Cosyntropin stimulation test (CST) without AI-related events 
[85]. Accordingly, we do not recommend additional workup 
in patients taking <5 mg prednisone equivalent per day in 
the morning beyond the continuation of their glucocorticoids 
and monitoring them for any signs and symptoms of AI. 
However, it is also important to consider the cumulative effect 
of previous glucocorticoids in patients in whom the dose of 
GCs has been tapered to less than 5 mg prednisone equivalent 
per day at the time of their surgical evaluation. Such patients 
should receive a short course of parenteral GC therapy when 
unable to take their daily GC dose.

High-dose GCs taken for short-term frequently cause HPA 
axis suppression although rarely clinically significant AI. 
Carella et al reported that a short course of high dose of pred-
nisone (40 mg 3 times per day for 3 days followed by a taper 
during the subsequent 4 days) resulted in transient HPA axis 

Table 1. Surgical stress associated with common surgical 
procedures, based on the modified Johns Hopkins surgical criteria 
[32]

Grade General Characteristics Characteristic Operations

Grade I 
(Minor)

Minimal to mild risk 
independent of 
anesthesia 

Minimal to moderately 
invasive procedure 

Potential blood loss of 
< 500 mL

Minor general surgical 
procedures (skin/ 
subcutaneous tissue 
procedures, inguinal 
hernia repair, breast 
biopsy) 

Endoscopy (including 
cystoscopy, hysteroscopy, 
bronchoscopy, minor 
laparoscopy, 
arthroscopy) 

Minor gynecologic 
procedures (tubal 
ligation, dilation, and 
curettage) 

Minor otolaryngology 
procedures 
(myringotomy tubes, 
tonsillectomy/ 
rhinoplasty)

Grade II 
(Moderate)

Moderate risk 
independent of 
anesthesia 

Moderately to 
significantly invasive 
procedures 

Potential blood loss of 
500-1500 mL

Open or laparoscopic 
resection/reconstruction 
of the digestive tract; 
cholecystectomy 

Thyroidectomy 
Cystectomy, nephrectomy 
Hysterectomy or 

myomectomy 
Laminectomy 
Joint replacement

Grade III 
(Major)

Major to critical risk 
independent of 
anesthesia 

Highly invasive procedure 
Potential blood loss 

>1500 mL 
Usual postoperative 

intensive care unit stay 
with invasive 
monitoring

Any major 
orthopedic-spinal, 
oropharyngeal, or 
genitourinary repair or 
reconstruction 

Any intracranial, major 
vascular, or 
cardiothoracic procedure

Table 2. Pharmacological properties of frequently used glucocorticoids [65–68]

Classification Equivalent 
Glucocorticoid Dose 
(mg)

Glucocorticoid 
Activity

Mineralocorticoid 
Activity

Biological 
Half-Life 
(hours)

Plasma 
Half- Life 
(hours)

Bound in 
Plasma 
(%)

Short Acting

Hydrocortisone 20 1 1 8-12 1.3-2.3 90

Cortisone acetate 25 0.8 0.8 8-12 0.5 —

Deflazacort 5 4 1 <12 1.3-1.9 40

Intermediate-Acting

Prednisone 5 4 0.8 12-36 2-4 75

Prednisolone 5 4 0.8 12-36 2-4 95

Methylprednisolone 4 5 0.5 12-36 2-4 78

Triamcinolone 4 5 Negligible 12-36 0.5 68

Long-Acting

Betamethasone 0.6 25-30 Negligible 36-72 5 64

Dexamethasone 0.375-0.75 30-40 Negligible 36-72 3.5-5 68
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suppression [86]. HPA axis recovery based on a CRH and 
CST was seen 1 week after treatment. Similarly, Spiegel et al 
showed that prednisone at doses of 40 mg/m2 to 100 mg/m2 

daily for <1 month could result in HPA axis suppression 
with recovery in <1 week and no clinically significant AI 
events. In the authors’ experience, it is common to see random 
and morning cortisol levels <5 µg/dL within a few days after 
a 6-day course of methylprednisolone (“Medrol pack”) or 
short courses of “pulse doses” of methylprednisolone 
(250-1000 mg). However, neither the literature review nor 
our observations have found clinically significant AI-related 
events in such patients. Therefore, the duration of therapy 
seems to have a greater impact than the dose on HPA axis sup-
pression. Indeed, all historically reported adrenal crises have 
been in patients on chronic GC therapy. Therefore, we do 
not recommend any action outside of routine perioperative 
monitoring in patients who have been on GCs for <4 weeks 
prior to surgery.

Patients taking 5 mg or more of prednisone equivalent per 
day for >1 month may have variable degrees of HPA axis sup-
pression [87]. The risk of HPA axis suppression is higher in 
patients taking higher doses for a longer duration. Such pa-
tients should not stop GCs prior to surgery without further 
evaluation of the HPA axis. The majority of these patients 
can stay on their current dose of GC perioperatively and can 
be administered a short course of intravenous GC postopera-
tively until they resume their oral intake (see therapy section).
Other variables that influence the risk of HPA axis suppression. The 
time of the day of GC administration can influence the risk of 
HPA axis suppression. In 8 healthy subjects who received 
0.5 mg of dexamethasone at midnight for 2 consecutive 
nights, there was a more prolonged HPA axis suppression 
compared to those who received the same regimen at 8 AM 

or 4 PM [88]. The administration of multiple GC doses 
throughout the day carries a higher risk for HPA axis suppres-
sion than the same total daily dose taken once a day [87, 89]. 
Myles et al in a crossover design compared cortisol levels after 
giving patients a single dose of prednisolone at 10 AM for 8 
weeks vs the same total daily dose divided as half at 10 AM 

and the other half at 10 PM for 8 weeks, returning to a single 
daily dose after [89]. Cortisol levels were significantly lower 
in patients during the time the dose was split compared to 
when patients received a single daily dose of prednisolone. 
Alternate-day (morning) GC regimens are associated with a 
lower incidence of iatrogenic Cushing syndrome and HPA 
axis suppression [64, 90].

There is a higher risk of AI-related clinical events if GCs are 
stopped closer to the date of surgical procedure, as the HPA 
axis needs time to recover [34]. In patients with inflammatory 
bowel disease (IBD) taking up to 180 mg/day of prednisone 
for 2 to 23 months, the ones who stopped prednisone >2 
months prior to surgery had the lowest risk of developing 
AI-related hypotension [76]. This retrospective study should 
be interpreted with caution since, when adjusted by disease se-
verity, no differences in hypotension were observed.

Nonoral glucocorticoid use
Intra-articular and epidural injections. The risk of AI with intra- 
articular GCs remains largely unrecognized and likely under-
estimated [72]. Both the absorption and the ability to suppress 
the HPA axis are proportional to the GC dose, half-life, solu-
bility, vascularization of the synovium (increased during 

inflammation), number of joints injected, and frequency of in-
jections [91–93]. In a meta-analysis, the intra-articular and 
the oral route carried the highest risk for HPA axis suppres-
sion [81]. In a small randomized controlled study that used 
a single fixed dose of 80 mg of methylprednisolone knee injec-
tion vs placebo, 25% of the patients receiving GC developed 
HPA axis suppression between week 2 and 4 after injection, 
and then returned to baseline [94]. When multiple joints are 
simultaneously injected, HPA axis suppression takes longer 
to recover. Habib et al reported that injecting 80 mg of meth-
ylprednisolone acetate in both knees simultaneously resulted 
in HPA axis suppression in 60% of the patients by week 1, 
30% to 35% between week 2 and 4, and 10% of patients at 
week 8 [95]. Epidural GC injections can also result in rapid 
and prolonged HPA axis suppression. A single dose of triam-
cinolone resulted in suppression of the HPA axis within 1 
week, slowly returning to baseline in about 4 to 12 weeks 
[96]. We receive a substantial number of referrals for AI of un-
known etiology where previous GC injections were not eli-
cited from the history. Until better quality data is available, 
we recommend evaluating the HPA axis in patients who 
have received 3 or more GC injections within 6 months before 
surgery [97].
Inhaled and intranasal. Inhaled GCs are absorbed systemically 
by the pulmonary vasculature with a smaller fraction swal-
lowed and absorbed by the gastrointestinal tract [72]. In a sys-
tematic review in patients with asthma using only inhaled 
GCs, higher risk of HPA axis suppression was seen with 
high doses of fluticasone equivalent (>1000 mcg/day), com-
pared to medium (200-1000 mcg/day) and low doses 
(<200 mcg/day), resulting in AI in 18.5%, 5.4% and 1.5% 
of patients, respectively. When analyzed by the duration of 
treatment, long-term use (>1 year) had a higher prevalence 
of AI compared to medium (1 month to 1 year) and short 
term (<1 month); duration of treatment was associated with 
abnormal HPA axis in 20.3%, 9.0%, and 1.3% of patients, 
respectively [81]. Another meta-analysis showed that the 
risk of basal cortisol suppression was higher with fluticasone 
compared to other inhaled steroids at the same equivalent 
dose [98]. The literature on AI from intranasal GCs is scarce. 
Intranasal fluticasone preparations in the United States are 
sold in quantities of 27.5 mcg and 50 mcg per spray. 
However, fluticasone nasal sprays purchased outside the 
United States may have higher strengths; authors have treated 
a patient who purchased fluticasone abroad at a strength of 
250 mcg per spray resulting in GC-induced AI.
Topical glucocorticoids. Topical GCs are classified based on po-
tency into 7 classes and 3 subgroups: ultra-high (Class 1-3), 
moderate (Class 4-5), and low (Class 6-7) potency corticoste-
roids. Topical GCs can be absorbed systemically through the 
skin depending on the surface area of application, location ap-
plied, and skin thickness and integrity of the skin (ie, ulcer-
ated, injured, or inflamed skin results in greater absorption) 
[72]. Suppression of the HPA axis and AI can occur with the 
most potent topical GCs, clobetasol propionate 0.05% 
(Class 1), and betamethasone dipropionate 0.05% (Class 2). 
Iatrogenic Cushing syndrome accompanied by HPA axis sup-
pression has been reported in adults with doses of approxi-
mately 33 to 100 g/week of clobetasol propionate and 49 to 
80 mg/week of beclomethasone dipropionate [99–101]. A 
fingertip of GC in a 5 mm nozzle tube is about 0.5 g (slightly 
lower in women) [102]. HPA axis suppression may appear 
within days of the use of high potency topical GC and the 
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duration of suppression is variable from weeks to months [99– 
101]. A 2002 literature review identified 1 fatality due AI in a 
child on whom large amounts of topical betamethasone was 
applied for generalized psoriasis [103]. Therefore, patients us-
ing potent topical GCs for prolonged periods of time or in 
combination with systemic GCs need to be cautious about 
the development of AI.
Other routes. The ophthalmic and rectal routes of steroid ap-
plication have been associated with HPA axis suppression in 
small studies or case reports. Ophthalmic solutions, when 
used excessively and for prolonged periods, can be systemical-
ly absorbed resulting in iatrogenic Cushing syndrome and 
HPA axis suppression [104]. Rectal GCs (enemas) have been 
associated with systemic absorption and HPA axis suppres-
sion particularly when the rectal mucosa is injured, inflamed, 
or ulcerated [105].

Special Situations
Many GCs are metabolized via cytochrome P450 3A4 
(CYP3A4). Therefore, inhibition of this enzyme results in 
risk of higher GC levels and HPA axis suppression. Multiple 
medications are known to inhibit CYP3A4; for example, ri-
tonavir, a protease inhibitor, has a known interaction with in-
haled fluticasone [92, 106, 107]. When taken concomitantly 
with ritonavir, fluticasone propionate at doses as low as 
500 ug/day for 2 months can result in iatrogenic Cushing syn-
drome [108]. Cobicistat, an HIV drug enhancer which also in-
hibits CYP3A4 when used with ritonavir, can make this 

interaction more severe [109]. Beclomethasone dipropionate 
is metabolized to a lesser degree by CYP3A4 and therefore 
could be an alternative to fluticasone when a combination 
with CYP3A4 inhibitors is required. Conversely, when 
CYP3A4 inducers are used, GCs metabolism increases, which 
may result in increased risk of perioperative AI in patients 
on a fixed GC dose. Some examples of CYP3A4 inducers 
include antiepileptic drugs, rifampin, and mitotane [92]. A 
list of drugs affecting the HPA axis is included in Table 3
[92, 110, 111].

Opioids such as morphine, oxycodone, fentanyl, tramadol, 
methadone, and heroin have been increasingly recognized as 
cause of GC-induced AI [112]. Li et al reported a prevalence 
of about 9% of AI in chronic opioid users (mean duration 
of 60 months) leading them to suggest that adrenal function 
should be monitored in patients taking > 20 mg of morphine 
equivalents per day [113]. Benzodiazepines such as midazo-
lam, oxazepam, alprazolam, and diazepam can also affect 
the HPA axis at the hypothalamic level [114–116]. Other 
drugs such as megestrol acetate and medroxyprogesterone 
acetate have GC activity with potential for HPA axis suppres-
sion [92]. In summary, careful review of the preoperative med-
ications aimed at identifying drugs causing HPA axis 
impairment is critical. Recently, in the United Kingdom, a 
National Patient Safety Alert was issued stressing the import-
ance of patients on chronic GCs to carry an emergency card to 
raise the awareness of the surgical team for appropriate peri-
operative GC management [117].

Evaluation of Adrenal Function in Patients 
Using Glucocorticoids
Patients should undergo HPA testing if there is a plan to stop 
GC before surgery (see therapy section). Morning and random 
(during stress) serum cortisol levels and the CST are the most 
commonly used tests for the evaluation of the HPA axis. 
Despite some studies pointing toward suboptimal sensitivity 
of the CST (high false negative), and even though the idea of 
assessing the entire HPA axis (using insulin tolerance or 
Metyrapone test) vs the adrenal response to exogenous 
ACTH analog is attractive, the authors are not aware of any 
reports of patients who passed the CST and suffered cardio-
vascular collapse perioperatively [118–122]. The authors 
have taken care of a large number of patients with pituitary 
disorders who underwent surgery without GC coverage based 
on passing the CST. However, the CST may be unreliable in 
the first few weeks following an acute hypothalamic or pituit-
ary event where the adrenal gland has not undergone enough 
atrophy [122–124].

The laboratory evaluation of AI usually starts with obtaining 
a morning (7 AM-9 AM) serum cortisol measurement. Cortisol 
<3 µg/dL is diagnostic of AI; measuring ACTH levels will dis-
tinguish between primary and GC-induced AI [125]. If morning 
cortisol levels are in the indeterminate range (3-10 µg/dL), a 
CST may be performed [126]. A stimulated cortisol value of 
>14 to 15 µg/dL at 30 minutes after 250 ug of IV or intramus-
cular Cosyntropin excludes AI [127–129]. These cutoff values 
are suggested based on newer cortisol assays that use monoclo-
nal antibodies and liquid chromatography with tandem mass 
spectrometry that result in about 20% to 0% lower cortisol lev-
els compared to >18 µg/dL using polyclonal immunoassays 
[127–130]. Dehydroepiandrosterone sulfate (DHEA-S) may 
be used to further assess the HPA axis in patients with 

Table 3. Common drugs affecting the hypothalamic-pituitary adrenal 
axis [92, 97, 110, 111]

Drugs Affecting CRH and ACTH Synthesis or Secretion

Opioids (morphine, oxycodone, fentanyl, tramadol, methadone, 
heroin) 

Benzodiazepines (midazolam, oxazepam, alprazolam, diazepam) 
Megestrol Acetate  
Medroxyprogesterone

Drugs Affecting Cortisol Synthesis

Azoles (Ketoconazole/Levoketoconazole, Posaconazole, fluconazole) 
Etomidate  
Metyrapone, Aminoglutethimide  
Trilostane

Drugs Affecting Cortisol Action

Mifepristone

Drugs Affecting Cortisol Metabolism

Cytochrome P450 3A4 Inhibitors 
(Decrease Cortisol Metabolism)

Cytochrome P450 3A4 Inducers 
(Increase Cortisol Metabolism)

Protease inhibitors (darunavir, 
indinavir, lopinavir, nelfinavir, 
telaprevir, ritonavir)

Antiepileptic drugs (phenytoin, 
fosphenytoin, phenobarbital, 

primidone)

Cobicistat, Azoles (itraconazole, 
voriconazole), clarithromycin, 
Grapefruit juice, mifepristone

Carbamazepine, rifampin, and 
mitotane

Calcium channel blockers 
(verapamil, diltiazem), 
amiodarone, cimetidine, 
conivaptan, erythromycin, and 
imatinibb

Nafcillin, rifabutin, bosentan, 
dorafenib, efavirenz, rifabutin, St 

John’s worta

aLess potent inducers. 
bLess potent inhibitors.
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Table 4. Studies addressing supplemental perioperative glucocorticoid treatment

Source Type of Study Population Perioperative 
Glucocorticoid Regimen

Total Dose per 
Day

Duration 
of the 
Protocol

Type of Surgery Outcome

Solem 
1962 
[136]

Prospective Heterogeneous 
(n = 78)

Group 1: A 7-day cortisone 
regimen for those under 
chronic glucocorticoid at 
the time of surgery 

vs 
Group 2: As needed therapy 
for those who stopped 
glucocorticoids > 4 weeks 
pre-op

100 mg 1 day 
pre-op 

300-400 mg  
day 1 
200 mg day 2 
150 mg days 3- 
4 
100 mg days 5- 
6 
Baseline dose 
day 7

7 days Various 
Mostly major 
stress

No AI in either group

Lloyd 
1981 
[137]

Prospective RA 
(n = 61)

Group 1: Hydrocortisone 
once, 

then only if post-op 
hypotension vs 
Group 2: PRN 
hydrocortisone 
Patients in both groups were 
on their chronic 
glucocorticoid regimen

100 mg day 1 1 day Various 
orthopedic 
procedures

PRN regimen was 
favored

Symbreg 
1981 
[118]

Prospective Heterogeneous 
(n = 22)

Group 1: Controls not 
previously exposed to 
glucocorticoids 

Group 2: Hydrocortisone 
treatment if abnormal CST 
vs 
Group 3: Monitoring if 
normal CSTb

125 mg day 1 1 day Various 
Mostly major 
stress

No AI in either groupa

Shapiro 
1990 
[139]

Prospective Renal 
transplant 

(n = 13)

Group 1: Continued their 
daily dose of prednisone 
(no supplemental 
glucocorticoids were 
given)

5-20 mg n/a Allograft 
Nephrectomy

No AI with continuing 
daily dose of 
prednisone

Bromberg 
1991 
[138]

Prospective 
(Cohort)

Renal 
Transplant 

(n = 40)

Group 1: Same population 
Controls 

Group 2: Continue daily 
dose of prednisone (no 
supplemental 
glucocorticoids were given)

5-10 mg n/a Various surgical 
and 
non-surgical 
stress

No AI with continuing 
daily dose of 
prednisone

Friedman 
1995 
[140]

Prospective RA, renal 
transplant 

(n = 28)

Group 1: Continued their 
daily dose of prednisone 
(no supplemental 
glucocorticoids were 
given)

1-20 mg n/a Major 
orthopedic 
surgeries

No AI with continuing 
daily dose of 
prednisone

Bromberg 
1995 
[143]

Prospective Renal 
transplant 

(n = 52)

Group 1: Continued their 
daily dose of prednisone 
(no supplemental 
glucocorticoids were 
given)

5-15 mg n/a Various No AI with continuing 
daily dose of 
prednisone

Glowniak 
1997 
[133]

Randomized 
controlled 
trial

Heterogeneous 
(n = 17)

Group 1: Daily dose + stress 
dose hydrocortisone 

vs 
Group 2: Daily dose + saline 
(placebo)

200 mg day 1 
100 mg day 2 
50 mg day 3

3 days Various No additional benefit 
from stress dose 
hydrocortisone

Thomason 
1999 
[135]

Randomized 
controlled 
trial 

Crossover

Organ 
transplant 
(n = 20)

Group 1: Daily dose + single 
stress dose hydrocortisone 

vs 
Group 2: Daily dose + saline 
(placebo)

100 mg 1 day Gingival 
surgeries 

Minor stress

No additional benefit 
from stress dose 
hydrocortisone 

No AI in either group

Mathis 
2004 
[141]

Retrospective Renal 
Transplant 

(n = 58)

Group 1: Stress dose 
glucocorticoids 

vs 
Group 2: No stress doseb

n/a n/a Lymphocele 
drainage

No additional benefit 
from stress dose 
glucocorticoids and                                                                                                                                                                                                                                   

(continued) 
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indeterminate serum cortisol levels [131]. A minimum DHEA-S 
level of 54 µg/dL rather than the lower limit of the normal range 
for the age has been suggested. One caveat is that any GC ex-
posure in the past may result in long-term low DHEAS levels 
despite normal cortisol reserve.

Perioperative Glucocorticoid Management
Studies Evaluating the Effects of Supplemental 
Perioperative Glucocorticoids
Studies over the past several decades addressing the use of sup-
plemental perioperative GCs in those on chronic GC therapy 
have major limitations. This has resulted in significant 

challenges to standardize clinical practice. As observed by 
Lamore et al, low-risk patients within the same institution 
often received hydrocortisone ranging between 50 and 
>200 mg/day for similar surgical risk, demonstrating a lack 
of agreement among clinicians [132].

The question of how much cortisol is needed to prevent ad-
renal crisis is still unanswered. Based on the 3 randomized 
controlled trials (RCTs) [133–135], at least 6 cohort 
[118, 136–140], and 1 retrospective studies [141], in most 
cases continuing the daily preoperative GC regimen seems to 
be sufficient. The 3 RCTs had small sample sizes (between 
17-92) and limitations, reflecting the need for additional stud-
ies in the field. Udelsman et al showed that in 

Table 4. Continued  

Source Type of Study Population Perioperative 
Glucocorticoid Regimen

Total Dose per 
Day

Duration 
of the 
Protocol

Type of Surgery Outcome

more hyperglycemia 
was reported

Zaghiyan 
2011 
[144]

Retrospective IBD 
(n = 49)

Group 1: Stress dose 
glucocorticoids 

vs 
Group 2: No stress dose

100 mg 
(incision) 

300 mg day 1 
Taper to 
prednisone 
20 mg per day

4 days Major 
abdominal 
surgeries

No additional benefit 
from stress dose 
glucocorticoids 

No AI in either group

Zaghiyan 
2012 
[145]

Prospective IBD 
(n = 32)

Group 1: Patient not 
currently on 
glucocorticoid (but 
previously exposed during 
the past 12 months) 
received no treatment 
perioperatively 

vs 
Group 2: Patients currently 
on glucocorticoids receiving 
low-dose supplemental 
glucocorticoids 
perioperatively

One-third of 
pre-op dose 
(incision) 

One-third of 
the dose Q8hrs 
day of surgery 
One-fourth 
Q8hr day 1 
One-sixth 
Q8hr day 2 
One-fourth 
Q12hr day 3 
Prednisone 
equivalent day 
4

4 days Major 
abdominal 
surgeries

No AI in either group 
Low-dose supplemental 
glucocorticoid 
regimens seem safe

Zaghiyan 
2012 
[146]

Retrospective IBD 
(n = 97)

Group 1: High (stress) dose 
glucocorticoids 

vs 
Group 2: Low-dose 
supplemental glucocorticoid 
(see [145])

100 mg 
(Incision) 

300 mg day 1 
Taper to 
prednisone

4 days Major 
abdominal 
surgeries

No AI in either group 
No additional benefit 
from high-dose stress 
glucocorticoids

Ayatac 
2013 
[147]

Retrospective IBD 
(n = 235)

Group 1: Daily dose + Stress 
dose glucocorticoids 

vs 
Group 2: Daily dose (unless 
off glucocorticoids 
preoperatively) + no stress 
dose

100 mg 
(operating 
room) 

300 mg day 1 
Then taper

n/a Major 
abdominal 
surgeries

One case of AI in group 
1. 

No additional benefit or 
harm was seen from 
stress dose 
glucocorticoids

Zaghiyan 
2014 
[134]

Single blinded 
randomized 
controlled 
trial

IBD 
(n = 92)

Group 1: Stress dose 
hydrocortisone 

vs 
Group 2: Hydrocortisone 
equivalent to oral daily dose

100 mg 
(incision) 

300 mg day 1 
225 mg day 2 
150 mg day 3 
100 mg day 4 
20 mg 
Prednisone

5 days Major 
abdominal 
surgeries

No additional benefit 
from stress dose 
glucocorticoids

Excluded studies where both chronic glucocorticoids and supplemental treatment were not provided [33, 148]. 
AI, adrenal insufficiency; CST, cosyntropin stimulation test; IBD, inflammatory bowel disease; n/a, not available; RA, rheumatoid arthritis. 
a125 mg resulted in higher cortisol levels than nonexposed. 
bUnclear if patients were receiving or stopped chronic glucocorticoids at the time of surgery.
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adrenalectomized primates who underwent open cholecystec-
tomy, physiological GC replacement doses resulted in similar 
outcomes when compared to 10-fold supraphysiological 
doses [142]. In contrast, when a subphysiological dose (1/10 
of the normal cortisol production rate) was given periopera-
tively, more hemodynamic instability with a higher mortality 
rate was observed [142]. In Table 4 we summarize the relevant 
clinical studies that support the notion that, in most cases, the 
current practice of perioperative GC administration is exces-
sive and potentially harmful.

The first RCT studied 17 patients on prednisone 5 to 60 mg/ 
day for a duration of 2 months to 20 years [133]. All patients 
had abnormal CST. These patients were kept on their daily 
dose of prednisone and randomized to saline injections vs 
stress doses of 200 mg of hydrocortisone with a gradual taper 
over 3 days. No adrenal crisis was observed in the group on 
the daily dose of GC and placebo [133]. In the second RCT, 
20 solid organ transplant patients receiving maintenance 
doses of prednisone (5-10 mg/day) were randomized to con-
tinue their chronic GC regimen vs additional 100 mg of 
hydrocortisone during gingival surgery under local anesthesia. 
No significant difference in hypotension or signs of AI was ob-
served in either group [135]. Lastly, a single blinded RCT in-
cluded 92 patients with IBD undergoing major colorectal 
surgery who were randomized to receive either hydrocorti-
sone 100 mg every 8 hours. followed by a taper, or IV hydro-
cortisone equivalent dose of the presurgical GC regimen 
[134]. As with the previous RCTs, there was no evidence of 
hemodynamic benefit from supplemental stress dose GCs.

The retrospective and nonrandomized prospective studies 
support the RCTs’ results. In kidney transplant patients on 
an average prednisone dose of 15.5 mg/day for >84 days, 
adding stress dose GCs to their chronic GC regimen did 
not provide additional hemodynamic benefit during minor 
surgical procedures but increased the risk of hyperglycemia 
[141]. In another study, 40 renal transplant patients on 
GCs for at least 3 months were admitted to the hospital for 
various reasons (sepsis, metabolic abnormalities, surgery). 
They continued their daily prednisone regimen of 5 to 
10 mg/day without supplemental treatment. When compar-
ing this group to the same population of patients with renal 
allograft admitted to the hospital for various reasons during 
the same period of time, there was no increased mortality, 
length of hospital stay, or adrenal crises [138]. Other groups 
consistently demonstrated a lack of benefit of stress dose 
GCs in patients with IBD undergoing major abdominal sur-
gery [76, 144–147].

In general, the literature supports the concept that continu-
ing the daily GC dose in patients suspected to have 
GC-induced AI is sufficient to prevent adrenal crises perioper-
atively. In fact, in the only 3 confirmed postoperative adrenal 
crisis-related deaths, chronic supraphysiological GC doses 
were stopped before surgery [8]. Based on the level of surgical 
stress, parenteral GC treatment in patients who cannot toler-
ate oral intake is reasonable with a gradual return to daily GC 
dose once daily intake is resumed (Table 5).

Glucocorticoid “Coverage”
There have been a large number of supplemental perioperative 
GC regimens recommended over the past decades [6, 8, 11, 
17, 66–156]. Some of these recommendations were based on 
estimated cortisol production rates during stress and others 

empirically based. Simultaneously, experts in the field have 
consistently voiced their concerns about the excess amount of 
GC coverage, which may be harmful (Table 6). Awareness of 
the lack of evidence to support the use of high-dose periopera-
tive GCs and the associated risks has resulted in a trend to rec-
ommend lower doses and shorter duration of these protocols 
[12–14]—from >300 mg of hydrocortisone [118] to about 
100 to 200 mg/day [11, 66, 70, 150, 156] and shorter tapers 
over <7 days—without increased mortality.

Table 5. Perioperative treatment regimens suggested for patient 
with glucocorticoid-induced AI

Regimen Degree of 
Surgical 
Stress

Glucocorticoid Regimen

Patients currently 
on 
glucocorticoids

Garde I 
Minor

• Continue daily dose of 
glucocorticoid

• 25 mg of IV hydrocortisone at 
induction if not able to 
tolerate PO

• Resume oral daily 
preoperative glucocorticoid 
regimen

Grade II 
Moderate

• Continue daily dose of 
glucocorticoid

• 25-50 mg of hydrocortisone 
IV at induction

• 15-25 mg hydrocortisone 
every 6 hours. until PO is 
tolerated and 
hemodynamically stablea

• Resume oral daily 
preoperative glucocorticoid 
regimen

Grade III 
Major

• Continue daily dose of 
glucocorticoid

• 50 mg of hydrocortisone IV at 
induction

• 25 mg of hydrocortisone IV 
every 6 hours on day 1 and 
until hemodynamically 
stable, then 15 mg IV every 
6 hours until PO is tolerateda

• Resume oral daily 
preoperative glucocorticoid 
regimen

Patients who stopped or plan to 
stop glucocorticoids before 
surgery

• Assess HPA axis in patients 
with intermediate to high risk 
(see Table 4)

• The closer the date of 
discontinuing glucocorticoids 
before surgery, the higher the 
risk of AI

• Treat based on the degree of 
surgical stress in those who 
have abnormal HPA axis

Adrenal crisis • 100 mg of hydrocortisone IV 
(IM if no IV access)

• 50 mg every 6 hours until 
hemodynamically stable and 
then tapera

• Taper depending on clinical 
response-intravenous fluids 
(normal saline), dextrose 5% 
if hypoglycemia

These recommendations include the authors’ personalized approach to 
perioperative management in patients with glucocorticoid-induced AI. 
AI, adrenal insufficiency; HPA, hypothalamic-pituitary-adrenal; IM, 
intramuscular; IV, intravenous; PO, by mouth. 
aSome experts favor continuous glucocorticoid infusion.
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Table 6. Review articles that commented on perioperative glucocorticoid treatment regimen

Source Year Comments from the Authors Conclusions on Treatment

Kehlet [151] 1975 “Glucocorticoid should only be given in a necessary and 
adequate dose” to avoid side effects

Most regimens are founded on empirical basis

Salem [8] 1994 The risk should be individualized based on the 
glucocorticoid preoperative dose, duration, and type of 
surgery

We are giving too much glucocorticoids

De Lange [157] 2008 There is no evidence to support excessive dosing 
(>200 mg hydrocortisone equivalent/day) or extensive 
duration in uncomplicated cases

We are giving too much glucocorticoids

Marik [158] 2008 “Stress doses are not routinely required as long as the 
patient continues their usual daily dose of 
glucocorticoids”

We are giving too much glucocorticoids

Fleager [155] 2010 “There are no evidence-based treatment guidelines that 
provide firm recommendations for the administration 
of perioperative steroids”

No evidence for current practice

Kelly [159] 2013 Based on the existing evidence, patients on long-term 
glucocorticoids do not require the once-standard high 
doses; just continue their maintenance doses 
perioperatively. Treat refractory hypotension with 
rescue doses of steroids

We are giving too much glucocorticoids

Hicks [160] 2015 “Current prescribing practices are highly variable, likely 
because of a lack of randomized controlled data and a 
wide range of preoperative treatment regimens”

“Recent data suggest that additional corticosteroid 
supplementation in the perioperative period may 
be unnecessary and may serve only to increase the 
risk of poor wound healing and infectious”

MacKenzie [161] 2016 “Despite little evidence for this practice 
(supraphysiological supplemental perioperative 
glucocorticoids), few have challenged this treatment 
paradigm”

“With few exceptions, the use of supraphysiologic 
glucocorticoid therapy for adults with presumed 
adrenal insufficiency due to exogenous 
glucocorticoid use should be regarded as 
unnecessary”

Liu [156] 2017 “Recommendations in major textbooks are confusing, 
inconsistent, and lacking in class A or B evidence”

There is no universal agreement regarding dose, 
duration, or regimen of supplemental 
glucocorticoid

Groleau [9] 2018 “It is not possible to conclude that perioperative 
administration of corticosteroids, compared to 
placebo, reduced the incidence of adrenal insufficiency”

Providing the daily maintenance dose without 
supplemental glucocorticoids may be sufficient

Khazen [162] 2018 “We found no evidence to support the use of 
supraphysiologic dose of glucocorticoid therapy 
provided the patient receive their usual dose of 
glucocorticoid preoperatively”

“A well-designed, large multicenter RCT is 
warranted”

Chilkoti [66] 2019 “There are no dogmatic guidelines regarding 
perioperative “stress dose” of steroids in patients on 
chronic steroid therapy; however, there is enough 
evidence that patients on long-term exogenous steroid 
therapy do not require the conventional high-dose 
perioperative corticosteroid, instead must be kept on 
their baseline maintenance dose”

We are giving too much glucocorticoids

Manou-Stathopoulou 
[163]

2019 “Clinical trials exploring glucocorticoid supplementation 
have provided conflicting data, reflecting the lack of 
understanding of the cortisol biology during the 
perioperative period”

More personalized targeted therapies are needed

Seo [11] 2021 Many clinical trials have low level of evidence, lack of 
power, without clear criteria for AI that results in high 
variation in the recommendations

No evidence for current practice

Laugesen [10] 2021 “Current evidence indicates substantial variation 
regarding risk and course of glucocorticoid-induced 
adrenal insufficiency … more research is needed to 
refine the diagnosis and to support evidence-based 
clinical decision-making”

No evidence for current practice

Many review articles discuss the topic and make recommendations without specific comments about the current practice. 
AI, adrenal insufficiency; RCT, randomized controlled trial.
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In a study by Arafah [164], 20 mg of oral hydrocortisone 2 
to 4 hours. prior to surgery resulted in a baseline cortisol of 
14.8 ug/dL in those with central AI. The administration of 
25 mg of hydrocortisone IV resulted in a nadir serum cortisol 
range of 16 to 34 ug/dL at 6 hours, which was higher with 
subsequent injections. In this setting, cortisol half-life was lon-
ger, volume of distribution increased, and clearance was lower 
in patients with AI compared to healthy individuals. This 
study suggests that patients with AI who are administered 
20 mg of hydrocortisone 2 to 4 hours prior to intubation 
have a baseline cortisol level comparable to healthy individu-
als with an intact HPA axis. Subsequently, providing 25 mg of 
IV hydrocortisone every 6 hours for 24 hours, followed by 
15 mg every 6 hours or 24 hours, resulted in no adverse events 
or symptoms suggestive of AI. This study did not include pa-
tients with GC-induced AI, but the same concepts may be ap-
plied as most subjects in this study had secondary AI. 
Additionally, cardiac surgery procedures were not included. 
The results are in agreement with the trend that our current 
practices provide higher perioperative GC doses than needed 
[165]. Considering this, 15 to 25 mg of hydrocortisone IV 
every 6 hours (60-100 mg/day) should provide enough peri-
operative coverage for even moderate to major operations in 
patients suspected to have GC-induced AI. Others have shown 
that continuous hydrocortisone infusion provides more stable 
cortisol concentrations during major stress without significant 
peaks and troughs that may be seen with intramuscular or IV 
administrations. This approach requires an additional IV infu-
sion line, and no data indicate that continuous hydrocortisone 
infusion prevents adrenal crisis or is associated with lower ad-
verse events compared to intermittent hydrocortisone injec-
tions [70]. We have summarized our perioperative approach 
in Table 5.

There is little data in perioperative management of pregnant 
patients on chronic GC. Cortisol levels increase throughout 
pregnancy secondary to increased CBG and to the HPA axis 
stimulation by placental CRH. The dose of GC replacement 
does not usually need to be increased during the first and se-
cond trimesters, but an increase in GC dosage of 20% to 
40% from the 24th week forward is generally recommended 
[166]. Accordingly, a 50% higher perioperative parenteral 
GC coverage, especially during the third trimester, and deliv-
ery seems reasonable. Careful perioperative monitoring of the 
hemodynamic status of pregnant women and their fetus is crit-
ical [166–168].

Conclusions
Perioperative management of patients on GCs has been a ma-
jor topic of discussion for over 70 years. It is clear that assess-
ment of the HPA axis in patients who have stopped GC 
therapy before surgery is necessary. However, despite the pro-
gress in our understanding of the stress response and hormo-
nal behavior perioperatively, there is significant heterogeneity 
in clinical practice in terms of GCs dosing. In most cases, ex-
cess GCs are administered, which may result in several adverse 
events. The current literature supports that in patients under-
going a surgical procedure, continuing the daily dose of GCs 
along with a short course of perioperative IV GCs based on 
the level of anticipated surgical stress is adequate. In most 
perioperative scenarios, administration of ≤100 mg/day 
hydrocortisone with a rapid taper to preoperative GC dose 
is sufficient. Close monitoring for any evidence of 

hemodynamic instability is fundamental. Finally, there is a 
need for large prospective studies to optimize the periopera-
tive management of patients on GCs to avoid any clinically 
significant AI-related event and do no harm.
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